Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
International Journal of Oral Biology ; : 134-142, 2020.
Article | WPRIM | ID: wpr-835489

ABSTRACT

Colon cancer is one of the most common malignant tumors, but there are still a few validated biomarkers of colon cancer. Exosome-mediated microRNAs (miRNAs) have been recognized as potential biomarkers in cancers, and miRNAs can regulate a variety of genes. Recently, Fusobacterium nucleatum was discovered in the tissues of human colon cancer patients. Its role in colon cancer was highlighted. F. nucleatum may contribute to the progression of colon cancer through the mechanism of exosome-mediated miRNAs transfer. However, the exosomal miRNAs regulation mechanism by F. nucleatum in colon cancer is not well known. Thus, we performed next-generation sequencing to investigate the overall pattern of exosomal miRNAs expression in the colon cancer cell culture supernatant. We have confirmed the alterations of various exosomal miRNAs. In addition, to investigate the function of exosomal miRNAs, a Kyoto Encyclopedia of Genes and Genomes analysis was performed on the target genes of changed miRNAs. Potential target genes were associated with a variety of signaling pathways, and one of these pathways was related to colorectal cancer. These findings suggested that F. nucleatum can alter exosomal miRNAs released from colorectal cancer cells. Furthermore, exosomal miRNAs altered by F. nucleatum could be potential biomarkers for the diagnosis and therapy of colon cancer.

2.
International Journal of Stem Cells ; : 182-191, 2020.
Article | WPRIM | ID: wpr-834292

ABSTRACT

Stem cells are undifferentiated multipotent precursor cells that are capable both of perpetuating themselves as stem cells (self-renewal) and of undergoing differentiation into one or more specialized types of cells. And these stem cells have been reported to reside within distinct anatomic locations termed “niches”. The long-term goals of stem cell biology range from an understanding of cell-lineage determination and tissue organization to cellular therapeutics for degenerative diseases. Stem cells maintain tissue function throughout an organism’s lifespan by replacing differentiated cells. To perform this function, stem cells provide a unique combination of multilineage developmental potential and the capacity to undergo self-renewing divisions. The loss of self-renewal capacity in stem cells underlies certain degenerative diseases and the aging process. This self-renewal regulation must balance the regenerative needs of tissues that persist throughout life. Recent evidence suggests lysophosphatidic acid (LPA) signaling pathway plays an important role in the regulation of a variety of stem cells. In this review, we summarize the evidence linking between LPA and stem cell regulation. The LPA-induced signaling pathway regulates the proliferation and survival of stem cells and progenitors, and thus are likely to play a role in the maintenance of stem cell population in the body. This lipid mediator regulatory system can be a novel potential therapeutics for stem cell maintenance.

3.
Endocrinology and Metabolism ; : 435-442, 2020.
Article | WPRIM | ID: wpr-832389

ABSTRACT

Background@#The aim of this study was to develop a scoring system to stratify the risk of papillary thyroid cancer (PTC) and to select the proper management. @*Methods@#We performed a systematic search of MEDLINE and Embase. Data regarding patients’ prognoses were obtained from the included studies. Odds ratios (ORs) with statistical significance were extracted from the publications. To generate a risk scoring system (RSS), ORs were summed (RSS1), and summed after natural-logarithmic transformation (RSS2). RSS1 and RSS2 were compared to the eighth edition of the American Joint Committee on Cancer (AJCC) staging system and the 2015 American Thyroid Association (ATA) guidelines for thyroid nodules and differentiated thyroid carcinoma. @*Results@#Five meta-analyses were eligible for inclusion in the study. Eight variables (sex, tumour size, extrathyroidal extension, BRAF mutation, TERT mutation, histologic subtype, lymph node metastasis, and distant metastasis) were included. RSS1 was the best of the analysed models. @*Conclusion@#We developed and validated a new RSS derived from previous meta-analyses for patients with PTC. This RSS seems to be superior to previously published systems.

4.
Yonsei Medical Journal ; : 746-753, 2018.
Article in English | WPRIM | ID: wpr-716429

ABSTRACT

PURPOSE: The present study investigated the dynamics and prognostic role of messenger RNA (mRNA) expression responsible for 18F-fluorodeoxyglucose (FDG) uptake in FDG positron emission tomography (PET) and radioactive iodine (131I) uptake in whole-body radioactive iodine scans (WBS) in papillary thyroid cancer (PTC) patients. MATERIALS AND METHODS: The primary and processed data were downloaded from the Genomic Data Commons Data Portal. Expression data for sodium/iodide symporter (solute carrier family 5 member 5, SLC5A5), hexokinase (HK1–3), glucose-6-phosphate dehydrogenase (G6PD), and glucose transporter (solute carrier family 2, SLC2A1–4) mRNA were collected. RESULTS: Expression of SLC5A5 mRNA were negatively correlated with SLC2A1 mRNA and positively correlated with SLC2A4 mRNA. In PTC with BRAF mutations, expressions of SLC2A1, SLC2A3, HK2, and HK3 mRNA were higher than those in PTC without BRAF mutations. Expression of SLC5A5, SLC2A4, HK1, and G6PD mRNA was lower in PTC without BRAF mutation. PTCs with higher expression of SLC5A5 mRNA had more favorable disease-free survival, but no association with overall survival. CONCLUSION: Expression of SLC5A5 mRNA was negatively correlated with SLC2A1 mRNA. This finding provides a molecular basis for the management of PTC with negative WBS using 18F-FDG PET scans. In addition, higher expression of SLC5A5 mRNA was associated with less PTC recurrence, but not with deaths.


Subject(s)
Humans , Disease-Free Survival , Fluorodeoxyglucose F18 , Genome , Glucose Transport Proteins, Facilitative , Glucosephosphate Dehydrogenase , Hexokinase , Iodine , Ion Transport , Positron-Emission Tomography , Recurrence , RNA, Messenger , Thyroid Gland , Thyroid Neoplasms
5.
Yonsei Medical Journal ; : 495-500, 2018.
Article in English | WPRIM | ID: wpr-715392

ABSTRACT

PURPOSE: Coronary artery diseases (CADs) are the leading causes of death in the world. Recent studies have reported that differentially expressed microRNAs (miRNAs) are associated with prognosis or major adverse cardiac events (MACEs) in CAD patients. In a previous meta-analysis, the authors made serious mistakes that we aimed to correct through an updated systematic review and meta-analysis of the prognostic value of altered miRNAs in patients with CADs. MATERIALS AND METHODS: We performed a systematic search of MEDLINE (from inception to May 2017) and EMBASE (from inception to May 2017) for English-language publications. Studies of CADs with results on miRNAs that reported survival data or MACEs were included. Data were extracted from each publication independently by two reviewers. RESULTS: After reviewing 515 articles, a total eight studies were included in this study. We measured pooled hazard ratios (HRs) and 95% confidence intervals (CIs) of miRNA 133a with a fixed-effect model (pooled HR, 2.35; 95% CI, 1.56–3.55). High expression of miRNA 133a, 208b, 126, 197, 223, and 122-5p were associated with high mortality. Additionally, high levels of miRNA 208b, 499-5p, 134, 328, and 34a were related with MACEs. CONCLUSION: The present study confirmed that miRNA 133a, which was associated with high mortality in CAD patients, holds prognostic value in CAD. More importantly, this study corrected issues raised against a prior meta-analysis and provides accurate information.


Subject(s)
Humans , Cause of Death , Coronary Artery Disease , Coronary Vessels , MicroRNAs , Mortality , Prognosis , Publications
6.
Korean Journal of Physical Anthropology ; : 83-89, 2018.
Article in Korean | WPRIM | ID: wpr-716731

ABSTRACT

The reformation of medical curriculum induced the reduction of anatomy course schedule especially in contact hours in anatomy laboratory. It has led to the use of more efficient teaching approaches in anatomy laboratory. The purpose of this work provide a detailed analysis of alternating dissections with reciprocal peer teaching in anatomy laboratory. Students were assigned alphabetically, in teams of eight or nine, to each dissecting table. The team was subdivided into two groups, A and B, each group dissected every other session. Students excused from dissection spent their time with team-based learning and self-directed learning. Dissected peer-teaching groups presented structures from the dissection to groups absent during dissection. Practical exam scores of the alternating dissection indicated no significant difference with those of classical dissection of previous year. Subgroup analysis of practical exam scores in alternating dissection was also no significant difference between group A and B. Assessment of question types showed that correction rates of questions in the dissected region was significantly higher on dissection group assignment. There were 9 questions (out of 86) in which there was a significant difference in correction rates between A and B groups. In conclusion, the laboratory paradigm of alternating dissection with reciprocal peer teaching demonstrated an effective method of learning gross anatomy laboratory for first year medical students.


Subject(s)
Humans , Appointments and Schedules , Curriculum , Learning , Methods , Students, Medical
7.
Anatomy & Cell Biology ; : 77-85, 2017.
Article in English | WPRIM | ID: wpr-153457

ABSTRACT

Transportation between the cytoplasm and the nucleoplasm is critical for many physiological and pathophysiological processes including gene expression, signal transduction, and oncogenesis. So, the molecular mechanism for the transportation needs to be studied not only to understand cell physiological processes but also to develop new diagnostic and therapeutic targets. Recent progress in the research of the nuclear transportation (import and export) via nuclear pore complex and four important factors affecting nuclear transport (nucleoporins, Ran, karyopherins, and nuclear localization signals/nuclear export signals) will be discussed. Moreover, the clinical significance of nuclear transport and its application will be reviewed. This review will provide some critical insight for the molecular design of therapeutics which need to be targeted inside the nucleus.


Subject(s)
Active Transport, Cell Nucleus , Carcinogenesis , Cell Physiological Phenomena , Cytoplasm , Gene Expression , Karyopherins , Nuclear Localization Signals , Nuclear Pore , Nuclear Pore Complex Proteins , Signal Transduction , Transportation
SELECTION OF CITATIONS
SEARCH DETAIL